Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
ACS Appl Mater Interfaces ; 14(31): 35299-35308, 2022 Aug 10.
Article in English | MEDLINE | ID: covidwho-1960239

ABSTRACT

Loop-mediated isothermal amplification (LAMP) has received considerable attention for decentralized (point-of-care and on-site) nucleic acid testing in view of its simple temperature control (60-65 °C) and short assay time (15-60 min). There remains a challenge in its wide adoption and acceptance due to the limitations of the existing amplification result reporter probes, e.g., photobleaching of organic fluorophore and reduced sensitivity of the pH-sensitive colorimetric dye. Herein, we demonstrate CdSeS/ZnS quantum dots (semiconductor fluorescent nanocrystals with superior photostability than organic fluorophore) with surface modification of cysteamine (amine-QDs) as a new reporter probe for LAMP that enabled single-copy sensitivity (limit of detection of 83 zM; 20 µL reaction volume). For a negative LAMP sample (absence of target sequence), positively charged amine-QDs remained dispersed due to interparticle electrostatic repulsion. While for a positive LAMP sample (presence of target sequence), amine-QDs became precipitated. The characterization data showed that amine-QDs were embedded in magnesium pyrophosphate crystals (generated during positive LAMP), thus leading to their coprecipitation. This amine-QD-based one-step LAMP assay advances the field of QD-based nucleic acid amplification assays in two aspects: (1) compatibility─one-step amplification and detection (versus separation of amplification and detection steps); and (2) universality─the same amine-QDs for different target sequences (versus different oligonucleotide-modified QDs for different target sequences).


Subject(s)
Nucleic Acids , Quantum Dots , Amines , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Sensitivity and Specificity
2.
Biomedicines ; 9(12)2021 Dec 03.
Article in English | MEDLINE | ID: covidwho-1554855

ABSTRACT

Mortality and morbidity associated with COVID-19 continue to be significantly high worldwide, owing to the absence of effective treatment strategies. The emergence of different variants of SARS-CoV-2 is also a considerable source of concern and has led to challenges in the development of better prevention and treatment strategies, including vaccines. Immune dysregulation due to pro-inflammatory mediators has worsened the situation in COVID-19 patients. Inflammasomes play a critical role in modulating pro-inflammatory cytokines in the pathogenesis of COVID-19 and their activation is associated with poor clinical outcomes. Numerous preclinical and clinical trials for COVID-19 treatment using different approaches are currently underway. Targeting different inflammasomes to reduce the cytokine storm, and its associated complications, in COVID-19 patients is a new area of research. Non-coding RNAs, targeting inflammasome activation, may serve as an effective treatment strategy. However, the efficacy of these therapeutic agents is highly dependent on the delivery system. MicroRNAs and long non-coding RNAs, in conjunction with an efficient delivery vehicle, present a potential strategy for regulating NLRP3 activity through various RNA interference (RNAi) mechanisms. In this regard, the use of nanomaterials and other vehicle types for the delivery of RNAi-based therapeutic molecules for COVID-19 may serve as a novel approach for enhancing drug efficacy. The present review briefly summarizes immune dysregulation and its consequences, the roles of different non-coding RNAs in regulating the NLRP3 inflammasome, distinct types of vectors for their delivery, and potential therapeutic targets of microRNA for treatment of COVID-19.

3.
Cells ; 10(7)2021 07 12.
Article in English | MEDLINE | ID: covidwho-1308302

ABSTRACT

MicroRNAs (miRNAs) are critical regulators of gene expression that may be used to identify the pathological pathways influenced by disease and cellular interactions. Viral miRNAs (v-miRNAs) encoded by both DNA and RNA viruses induce immune dysregulation, virus production, and disease pathogenesis. Given the absence of effective treatment and the prevalence of highly infective SARS-CoV-2 strains, improved understanding of viral-associated miRNAs could provide novel mechanistic insights into the pathogenesis of COVID-19. In this study, SARS-CoV-2 v-miRNAs were identified by deep sequencing in infected Calu-3 and Vero E6 cell lines. Among the ~0.1% small RNA sequences mapped to the SARS-CoV-2 genome, the top ten SARS-CoV-2 v-miRNAs (including three encoded by the N gene; v-miRNA-N) were selected. After initial screening of conserved v-miRNA-N-28612, which was identified in both SARS-CoV and SARS-CoV-2, its expression was shown to be positively associated with viral load in COVID-19 patients. Further in silico analysis and synthetic-mimic transfection of validated SARS-CoV-2 v-miRNAs revealed novel functional targets and associations with mechanisms of cellular metabolism and biosynthesis. Our findings support the development of v-miRNA-based biomarkers and therapeutic strategies based on improved understanding of the pathophysiology of COVID-19.


Subject(s)
COVID-19/metabolism , Coronavirus Nucleocapsid Proteins/genetics , Metabolic Networks and Pathways , MicroRNAs/genetics , RNA, Viral/genetics , SARS-CoV-2/physiology , Animals , COVID-19/virology , Cell Line , Chlorocebus aethiops , Host-Pathogen Interactions , Humans , Phosphoproteins/genetics , SARS-CoV-2/genetics , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL